

Edexcel Further Maths AS-level Further Pure 1

Formula Sheet

Provided in formula book

Not provided in formula book

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Vectors

Scalar product	$a \cdot b = a b \cos\theta$
Vector product	$\mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta \ \hat{n}$ $= (a_2 b_3 - a_3 b_2) \mathbf{i} + (a_3 b_1 - a_1 b_3) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}$ $= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

Scalar triple product
$$\begin{vmatrix} a \cdot (b \times c) = a_1(b_2c_3 - b_3c_2) \\ + a_2(b_3c_1 - b_1c_3) \\ + a_3(b_1c_2 - b_2c_1) \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Area of a general triangle ABC	$=\frac{1}{2} \overrightarrow{AB}\times\overrightarrow{AC} $
Area of a general parallelogram ABCD	$= \overrightarrow{AB} \times \overrightarrow{AD} $

Volume of parallelepiped	$V = \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}) $
Volume of a tetrahedron	$V = \frac{1}{6} \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}) $

Conic Sections

Parametric	equation	of a	curve
------------	----------	------	-------

$$x = p(t), y = q(t)$$

Parabola

Cartesian equation of a parabola	$y^2 = 4ax$
Parametric equations of a parabola	$x = at^2, y = 2at, t \in \mathbb{R}$
Focus, S, of a parabola	S=(a,0)
Directrix of a parabola	x + a = 0
Equation of the tangent to the general parabola	$ty = x + at^2$
Equation of the normal to the general parabola	$y + tx = 2at + at^3$

Hyperbola

Cartesian equation of a rectangular hyperbola	$xy = c^2$
Parametric equation of a rectangular hyperbola	$x = ct, y = \frac{c}{t}, t \in \mathbb{R}, t \neq 0$
Equation of the tangent to the general rectangular hyperbola	$x + t^2 y = 2ct$
Equation of the normal to the general rectangular hyperbola	$t^3x - ty = c(t^4 - 1)$

The *t*-formulae

When
$$t = \tan \frac{\theta}{2}$$
:

$$\sin\theta = \frac{2t}{1+t^2}$$

$$\cos\theta = \frac{1 - t^2}{1 + t^2}$$

$$\tan \theta = \frac{2t}{1 - t^2}$$

Numerical methods

Euler's method for approximating solutions for first-order differential equations

$$\left(\frac{dy}{dx}\right)_0 \approx \frac{y_1 - y_0}{h}$$

$$y_{r+1} \approx y_r + h\left(\frac{dy}{dx}\right), r = 0,1,2,...$$

Euler's method for approximating solutions for second-order differential equations

$$\left(\frac{d^2y}{dx^2}\right)_0 \approx \frac{y_1 - 2y_0 + y_{-1}}{h^2}$$
$$y_{r+1} \approx 2y_r - y_{r-1} + h^2 \left(\frac{d^2y}{dx^2}\right), r = 0,1,2,...$$

